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A FORTRAN COMPUTER PROGRAM FOR CALCULATING
THE PROPAGATION OF PLANE, CYLINDRICAL, OR SPHERICAL
FINITE AMPLITUDE WAVES

INTRODUCTION

Several adequate theories [1,2,3], based on approximations to the

) nonlinear wave equation, have been developed to describe the behavior of a
one-dimensional wave of moderate amplitude as it propagates through a nonlinear
fluide Most of these theories, however, are not conveniently applied to the
problem of describing the propagation when the wave is of arbitrary initial
waveform or when the linear absorption has an arbitrary frequency dependence.
To handle these more general casec, investigators [4,5,6] have adapted the
phenomenological model of Fox and Wallace [7] to use a high-speed computer
to calculate the propagation stepwise. The distance of propagation in this
model is divided into small intervals. The wave is first allowed to distort
over one interval and is then corrected to account for absorption and geometrical
spreading. The procedure is then repeated for the new waveform over the next

interval., The use of small intervals preserves the interaction between the

distortion, the absorption, and the geometrical spreading mechanisms. Since
the distortion mechanism is applied in the particle velocity domain with
absorption and geometrical spreading being applied in the frequency domain,

it is necessary to switch back and forth between the two domains during each
step. Even with the use of the Fast Fourier Transform (FFT), this procedure

is a time-consuming process. In addition, one must take special care in
applying the distortion mechanism when the waveform has a very steep shock-like

portion.

We describe in this report a new procedure for calculating the
propagation of plane, cylindrical, or spherical finite amplitude waves.
. This procedure performs the stepwise calculations entirely in the frequency
domain, thus avoiding both the use of the FFT and the steep waveform problems.
We also describe a FORTRAN computer program called FAW that implements the

new procedure.

The theory behind the procedure is described in Sec. I. A discussion
of the relative importance of linear absorption and nonlinear effects is

presented in Sec. II. In Sec. III the numerical implementation of the procedure

Manuscript submitted November 24, 1980.
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is developed. This is followed in Sec. IV by a description of the computer

program FAW. Included are discussions of the significant FORTRAN variable
names, the major computational blocks, parameter input, printed output,

number of harmonics required in the calculation, and initial step size.

Section V contains a comparison of results obtained using the new procedure

-

with results obtained using the phenomenological model. The report concludes

with appendices containing sample output and a program listing of FAW.

1. THEORY

An approximate nonlinear wave equation valid for one-dimensional and
progressive plane, cylindrical, and spherical waves in a lossless fluid

is the generalized Burgers' equation [8]

U 3
v + (a/r)u - bU-S? = 0, (1)

=
where U = particle velocity, E
=
r = spatial coordinate, S
-
. r e
T = retarded time (t - E—), E
o 3
¢, = small signal sound speed,
h = B/c 2
o

8 =(1+ 5% ), the nonlinearity parameter, and

a = 0 (plane waves),

i
3
fl

2
4
- 3
P2t
‘%

= 1/2 (ecylindrical waves), or

2l

= 1 (spherical waves).

Equation (1) is modified to include linear absorption by noting that in the

absence of nonlinearity the amplitude decays a2ccording to )

ur) = U (rO/r)a exp [~ a(w)(r-r )] (2)

or

%% = —(a/r) U - a(w) U. (3)




e e Mlurmrs e s o

LK A

kG

P YN R MR BESNIIA

The first term on the right-hand side of Fq. (3) represents the loss due to
geometrical spreading and is already included in Fq. (1). The second term
represents the loss due to linear absorption. Adding this term to Fq. (1)
results in the following nonlinear equation for a lossy fluid with arbitrary

frequency-dependent absorption where dispersion has been neglected:

3y
3T

+ (a/r)u - bU (3U/31) = - a(w) U (&)
We now choose as a trial solution a Fourier series of linear damped waves

of arbitrary phase with amplitudes that are a function of the spatial

coordinate r:

U(r,T) = }E:(ro/r)a { Ck sin(kwor) + "k cos(kwor) } exp[- uk(r—ro)], (5)
k=1

where o is the absorption coefficient appropriate for the kth harmonic.
The fundamental frequency w is chosen less than or equal to l/To, where To
is either the period of the initial waveform at r=r when the waveform is

periodic or it is a time length sufficiently long to contain the resulting

waveform at all desired distances when the waveform is transient. Substitution

of Eq. (5) into Eq. (4) yields two coupled differential equations governing

the behavior of the amplitude components Gk and "k as a function of the spatial

coordinate r:

G, .
k-l-s; sin (kmor)exp I—uk (r—ro)]
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and

bbb g

kz 1;—5—1; cos (ku.oT) exp [-uk(r-ro)]

buw
= To (ro/r)a KZ m exp [—(Ol[mm)(r-ro)]
,m

{(chm + G[_Hm) cos [(Z-&m)wot]
+ (H.P.Gm ~ Gﬂﬂm) cos[(l-m)mo't]}.

Factoring out terms of the same frequency (i.e., terms in which {+m = k,

L-m = k, and £-m = -k) results in

k-
3Gk b:no a !
5T T (rO/r) 3zm(ck—mcm-“k-m“m) exp ‘-(gk-mmm.ak)(r-ro)]
=1

(8)

=
=
=
e
=
E
A

o
it

- 0 Y (r-
1 ((3}{_‘_‘“‘(;m + "k-i'm"m) exp | (ka-“‘m k)(r ro)]

i

il

- i
!

m ((;m_kG'n + “m—k"m) exp [-@ m_kﬁm-’lk)(r-t 0)]

m=k+1 =
E B
and
aHk bwo a <
—_— = 02 v v - - -
w =3 (r /r) E m(W_G +G_B)exp =, ¥ -%)( ro)]
m=1
4 . - _ G -(a -0 -
. + Zm(ukﬂncm Ck-kn"m) exp [=( ktm' m k)(r ro)] C))
N =1
N + E m(l!m_kcm - Gm—k“m) exp [-(am_k+‘tm~“k)(r—ro)]}.
m=k+1




T e

The first sum on the right-hand side of Fgs. (&) and (9) represents contributinns
to the kth harmonic due to the interaction of lower harmonics producing a sum
frequency component at the kth harmonic. The second sum in the equations
corresponds to the interaction of higher harmonics producing a difference
frequency component at the kth harmonic. The last sum in the equations repre-

sants the loss to the kth harmonic due to its interaction with all of the harmonics.

Combining the last two sums in Fqs. (8) and (9) vields

k-1
ack bwo a
- = (ro/r) Zm (Ck_mCm - "k-m"m) exp (—(akdm«mm-ak)(r-ro)]
=1
© (1n)
-k E (Gk+m(:m + “k+m"n) exp [-(ak+m+um-ak)(r_ro)]}
m=]
and
ank bwo a k-1
5 = 7 (t, /1) E m (M _ G+ B G ) exp [-(9_ 40 -9 )(r-r )]
=1
(1

(%)
+k E (HmGk+ﬂ - Hk+me) exp [—(ak+m+am—ak)(r-ro)] .
m=1 ]

Equations (1u) and (11) are the coupled nonlinear equatiocns that are numerically
integrated to obtain the harmonic amplitudes Gk and Vk as a function of the

spatial coordinate r.

11. RELATIVE IMPORTARCE OF LINEAR ABSORPTION AND NGNLINFAR FFFFCTS

The Goldberg number T is defined as
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where o is the absorption coefficienc and € is the discontinuity distance,
the point at which the waveform would shock if linear absorption were absent.
The discontinuity distance is geometry dependent and for initially sinusoidal

waves is given by

M S e e R

c02 %

lp = e (plane wave), (13) ;

o0 ;'

,%

c02 co4 %

L‘ = 1 e

c =5 + TR + 753 (cylindrical wave), (14) %

oo 4r Bl "w E

o o O %

and %
=

£

’ff%

2,, , 2

= - 1 v ° =

L, =1, exp (co Loworo) (spherical wave) (15) :

§

If the Goldberg number is greater than unity, the nonlinear effect becomes %
important and shocks are likely. 1In this case, as the waveform approaches the ;ﬁ
3

discontinuity distance, nonlinear effects dominate the loss due to linear

absorption. The amplitudes of all harmonics above the fundamental increase at

St

the expense of the fundamental. After the discontinuity distance is reached,

i

however, linear absorption plays an increasingly larger role and eventually the

L

amplitudes of all the harmonics decrease with distance,

“'l;'“ vt the Ay 13

The use of the Goldberg number is important in deciding on the number of

harmonics to retain in the calculation. If the Goldberg number is small compared
to unity, then the nonlinear effect is small and the waveform is not going to
shock. In this case, a small number of harmonics will adequately describe the
waveform at any position. However, if the Goldberg number is large, then shocks
are likely and a large number of harmonics must be retained in the calculation.

A discussion of the relative error associated with the number of harmonics retained

in the calculation is found in Section IV.E.
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II11. NUMERICAL INMPLEMENTATION

. A. Series Truncation

AR

T M A

i

. In order to numerically integrate Eqs. (10) and (11) the infinite
series on the right-hand side of each equation must be truncated in such a

manner that no instability is introduced into the algorithm. This problem can

AR AN

best be examined by assuming that the phase of the initial waveform is such

-
(L Ll

that all the amplitude coefficients H are zero and that i harmonics are retained

k
in the calculation. This results in Fq. (11) vanishing and Fq. (10) reducing

R YR

- = to

. 3G buw k-1

. __5.= 0 (r /r)a mG € exp [-(a +a_ -0, Y(r-r )}

i 3t 2 o } : k-m m k-m "m "k o

=1

1 | 5ok (16)
;7 % -k E G4l €XP [-(ak+m+um-uk)(r-ro)] .
; H m=l

The simple truncation used in obtaining Fq. (16) is insufficient when
; an attempt is made to examine the propagation of the waveform beyond the dis-

continuity distance. In calculating the propagation, the flow of energv fron

i lower to higher harmonics stops with the last hamonic retained in the series.

This is obvious from the fact that the second series in Fq. (16) vanishes for

f the jth harmonic. Thus the use of simple truncation eliminates the primary

. . .th . .
nonlinear energy-loss mechenism of the last (_1t ) harmonic. The harmonics
E preceding the last are affected in a similar, but less severe, manner. The

calculated values for t:e last harmonics become abnormally large relative to

4 the lower harmonics. Being “toc large”, these harmonics then cause an abnormal
growth of the next jower harmonics so that eventually even the lowest harmonics
are significantly in error. This instability is circumvented in the program by
artificially increasing the loss of the last few (and least significant) harmonics
by requiring that their amplitudc never exceed the amplitude of the next lower

harmonic.




B. Integration Method

Equations (10) and (11) are stepwise numerically integrated by the
first-order Runge-Kutta method to obtain the amplitudes of the harmonics at
progressively increasing distances. This method, as applied to the numerical

solution of the problem

- k
Gk =y T Rk(r, G, 1) (17)
3 and
. . ()pk
- I = e =
o= =S (r, G, 1) (19)

[T TR

yields the amplitudes at the P'+lth step as

v . i .. rd
G (1) = 6, () + 5 [670) + 6 0m1)] (1°)

and

1]

. - h ?rar .
i (K+1) = 1 (K) + 5 [r7c0y + nooeny], (20)

vhere

G (X)) = R Tr(N), G(M®), H(R), (21

9 RIS = s (D, e, 10, (22)
‘ £

E g c,:(r\'«n) =R (r(N+1), G(F) + hET(R), N(N) + hRT(R) T, (22)

HO(R41) = S, (r(r+1), G() + hCT(R), I(X) + hiP7() 7, (24)
B
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and h is the incremental step size [9]. This procedure has the advantage of

not requiring the calculation of any derivatives of Rk and Sk as would be

necessary in a Taylor-series expansion. The procedure also allows the step

g j size to be easily changed at any point in the calculation. The only disadvantage
i is that the right-hand sides of Eqs. (17) and (18) must be evaluated twice

at each step.
3 . C. Variable Step Size

In calculating the propagation of a finite amplitude wave it is desirable
to use the largest step size that will produce accurate results. During the
g initial portion of the propagation, when the waveform is undergoing its most

3 rapid change due to nonlinear effects, a small step size is required. After

L

the discontinuity distance is reached, however, the nonlinear effects become

less pronounced and the step size can be increased. In order to minimize the

TR

running time of the computer program, hoth under these circumstances and on
£ occasions when an overly conservative initial step size has been chosen,

a variable step size feature is incorporated.

This feature doubles the step size whenever the average percentage

change in the amplitude components IAGj/Gjl and lAHj/Hjl, =1, 2, « « o, k,

over the previous step is below some arbitrary value €. The integer k is the
number of harmonics printed in the output and is generally less than the number
of harmonics retained in the calculation. There are two methods for controlling

g the doubling of the step size. FEither the internal value € may be modified or the

§ number of harmonics printed out may be changed.

The uarmonics are printed out at fixed distance intervals (nrirt out
: distance interval = specified integer x initial step size). When the step
i size 'is doubled, it is unlikely that the harmonics will be calculated at positions

coinciding with the print-out distance. The program circumvents this problem
by linearly interpolating the output from the calculated values.

I o
L -]

il
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D. Renormalization

: 3 One of the standard programing problems associated with numerical

solutions is the limited exponent range of computers. The Advanced Scientific
Computer (ASC) at the Naval Research Laboratory (NRL), for which this program
was written, has an exponent range of -76 to +76. The terms most likely to

- : exceed this range are the exponentials in Eqs. (10) and (11).

To illustrate this problem the exponentials in Eqs. (10) and (1t1)

- are examined for the case of an omega-squared frequency dependence of the

absorption coefficients (fresh water). The exponential in the second series

on the right-hand sides of Eqs. (10) and (11) may then be written in the form

e

exp [-(akmwm-ak)(r—ro)] = exp [-Zm(k-tm)“l(r—ro)l, (25)

P Y

where Gl is the absorptinn coefficient of the fundamental. Since m and k are

o s o o o

no problem if the computer is told to set underflow to zero (the error

associated with setcting numbers smaller than 10—76 to zero is negligible).

e 0w %

The exponential in the first series on the right-hand sides of Eqs. (10)

and (11) may be written as

exp [-(ak+m+um—ak)(r-ro)] = exp [+2m(k-m)u1(r-r0)]. (26)

Since m is always less than k in the first series, this exponential may exceed

R e

the upper bound of the exponent range. As an example, when 50 harmonics are

retained in the calcu.ation of a 100-kliz spherical wave in fresh water

(al = 2,38 * 10-4 N/m), the exponent range of +76 1s exceeded at r = 255 m.
This distance is totally insufficient to examine the asymptotic decay of the

spherical waves.

positive integers, the exponential tends to zero with increasing r. This causes

e

L R g T
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A simple method for circumventing this problem is to renormalize the
waveform after each step. In this procedure the source position ro is changed
after each step and set equal to the current position r. This limits the size
of the distance term in the exponentials to h, the step size, and merely requires

that the amplitudes be transformed as

Ak——-—oAk [R0 /(R0+h)] exp Gﬂkh). (27

It has the additional advantage of not requiring the calculation of the exponentials
at each step since they do not change and can be stored. If the step size doubles,
the stored values are simply squared.

IV. DESCRIPTION OF COMPUTER PROCGRAM FAW

The computer program FAW, which is listed in Appendix A, is written in

universal FORTRAN and should run on any computer accepting this language.
However, the program has been specifically written to take advantage of the

vectorizing capability of the ASC at NRL.

While the use of the vectorizing option on the ASC greatly reduces the
running time of the program, it does not allow the use of variable ranges on
nested DO loops. This constraint results in FAW running inefficiently on

computers that do not have vectorizing capability. Therefore, it may be

necessary to modify FAW for use on a nonvectorizing computer.

The DO loops, which are modified in FAW for the vectorizing process,
are the loops associated with the two series on the right-hand sides of Fgs.
(10) and (11) (lines 243 to 256 and 320 to 323 in FAW). The first series on
the right-hand sides of Egs. (10) and (11) has an upper limit of k-1 for the

kth harmonic. The second series is truncated to an upper limit of j-k for the

kth

harmonic when j harmonics are retained in the calculation. Since both of
these limits are a function of the harmonic increment being calculated, the

range of the inner DO loop is not a constant. However, the ASC runs quicker

11




if the loops are vectorized, and to do this the ranges of the two inner loops
have been set equal to J-1. This results in extraneous terms being calculated

and increases the running time on nonvectorizing computers.

The extraneous terms do not contribute to the calculation and are all

set equal to zero in the DO loops. This is accomplished by generating a

§ matrix for each DO loop whose elements are zero for the extraneous terms and §
§ whose nonzero elements are the exponential terms in Eqs. (10) and (1l1). As §
% explained in the section on renormalization, this matrix need only be calculated ?
g once and is then used at each step. %
§ The remainder of this section describes FAW. Included are a listing ‘%
3 : of the significant FORTRAN variable names and descriptions of the major g;%
computation blocks in FAW followed by a discussion of the parameter input, ;
printed output, number of harmonics to retain in calculation, and initial
step size.
A. Significant FORTRAN Variable Names
The significant FORTRAN variable names in FAW are as follows: 2

i

>
yo EW

Geometrical spreading factor

¢ (plane waves),

]

1/2 (cylindrical waves),

= 1 (spherical waves).

i ALPHA Vector whose Ith element ALPHA (1) is the absorption i

coefficient of the Ith harmonic.

B The constant b = B/co2 in Eqs. (10) and (11).

BETA Coefficient ~f nonlinearity.
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DG

DGl

DR

DH1

DX

DXI

E

Fl

FREQ

GH

Small signal sound speed e

Vector containing the differential change of the amplitude
coefficients G. The element DG(I) contains the differential
change hC{(N) at the N th step as given by Fq. (21).

Vector whosc Ith element DC1(I) contains the differential

change hC{(N+1) at the N+1th step as given by Fq. (23).

Vector containing the differential change of the amplitude
coefficients H. The element DH(I) contains the differential
change hHi(N) at the NEB step as given by Fq. (22).

Vector whose Ith element DH1(I) contains the differential

change hH’'(N+1) at the PZ+1th step as given by Eq. (24).
Current step size,
Initial step size.

Normalization constant. The output is normalized to the

constant E,which is an input paramcter and generally set

equal to tha initial amplitude of the fundamental.
Factor from Fqr.(10) and (11) equal to (ro/r)a.
Frequency of fundamental,

Vector whose Ith element contains the amplitude G(I) of

the sine component of the Ith harmonice.

Vector whose Ith element GH(I) = ¢xp [-ALPRA (I) * DX].

13
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GX Array whose elements are all zero that is used as a buffer
for the working array 2. In the NO loops which calculate
DG, DG1, DH, and DH] the ranges of the loops have been )
written to take advantage of vectorization. This results
in negative indices for some of the G2 elements in “he

calculation. The GX array is placed before the G2 array to

T I E%":i‘ e o

prevent incorrect results.

G2 Array whose Ith element first contains G(I) and in later
calculations contains G(I) + DG(I) as required by the

Runge-Kutta method,

M‘#ﬂﬁmﬁﬂ‘ ‘;.'""ﬂ"'%ﬁ‘

I Same as G for the cosine elements.

HX Same as G¥ but placed in front of n2.
n2 Same as G2 for the cosine elements.
IAF Input parameter equal to either zero, if only the absorpticn

coefficient for the fundamental is input and an omega-

m

squared dependence for the harmonic absorption coefficients

by

is used, or one if the abhsorption coefficient is input for

2
each harmonic retained in the calculations. §
1P Print-out interval = IP * D¥, §§
7
J Number of harmonics retained in the calculations. :
=5
K Number of input G coefficients.
KI Number of input H coefficients.

o
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RI

RMAX

RN

RO

X1

X11

Xz

X22

s

Number of externally supplied absorption coefficients
used to modify the omega-squared dependent coefficients.
“:ed ¢rly 1f IAF = 0 and the omega-squared dependence is to

be modified.
Number of harmonics printed to output.

Spatial coordinate.
Maximum distance that propagation is to be calculated.

Source position. Modified after each step. Set equal to

the present position R as described in section on renormal-

ization.

Initial source position.

Doubly dimensioned array whose elements X1 (M, N) are unity

if X11 (M, ¥) is nonzero and zero otherwise.

Array whose elements X11 (M, N) = exp ((ALPHA(M) -
ALPHA(N) - ALPHA (M-N)) *# DX) for M = 2 to Jand ¥ =1

to M. All other elements are zero.

Doubly dimensioned array whose elements X2 (M, N) are unity

if X22 (M, N) is nonzero and zero otherwisec.

Array whose clements X22 (M, N) = exp (( ALPHA(M) -
ALPHA(N) - ALPHA (M4M)) * DX) for M =1 to J-1 and
N =1 to J-M. All other elements are zero.
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Major Computation Blocks in FAW

Descriptions of the major computation blocks in FAW are as follows:

Computation Block

’

Initialize all arrays to zero.

Read first fourteen data cards and

print data to output.
Obtain absorption coefficients.

Read input waveform and print waveform

to output.

Calculate matrix elements of X1,
X11, X2, and X22 and elements of

vector GH.

Calculate DG and DH, first derivative
of Runge-Kutta method.

Calculate new amplitudes for second

derivative.

Find last five non-zero harmonic
amplitudes and modify them, if
necessary, to insure that they form

a non-increasing sequence,

Calculate DGl and DHl, second
derivative of Runge-Kutta method.
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From

29

51

142

183

204

243

260

289

320

Line Number

To
44

138

179

199

221

256

265

308

333
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J Computation Block Line Number

E From To
: Calculate new amplitudes for current 337 340
3 position.

Find last five non-zero harmonic 344 382

amplitudes and modify them, if necessary,

to insure that they form a non-increasing

sequence.
] Check position for output. 386 386
Interpolate output if output position 390 404

does not coincide with position of

calculated amplitudes.

Standard output (no interpolation 405 408
necessary).
Print output. 409 418
Check step size (if incremental 422 431
change is small, then double step
size).
; Modify waveform for renormalization. 435 438
é Double step size. 443 454

Next step. 456




C. Parameter Input
The input consists of a series of data cards:

Data Card 1: Format D17.10 - FREQ, the frequency of the fundamental.

KRR

Data Card 2: Format D17.10 - C, the small §ignal sound speed in

LA b

meters per second.

iy e U il

: Data Card 3: Format D17.10 - BETA, the coefficient of nonlinearity.

T

..

Data Card 4: Format D17.10

ol

E, the normalization constant.

gkl

Data Card 5: Format D17.10 - DXI, the initial step size in meters.

Data Card 6: Format D17.10 - RMAX, the maximum propagation distance

in meters.

e e e o vy

e AR | AR A TR Y e R

m
T 0

Data Card 7: Format D17.10 - RO, the source size, in meters, for

cylindrical and spherical waves. If a plane wave is being

calculated, RO is not used but a value must bhe entered.

n

ol

omega-squared dependence for the absorption coefficients is

Data Card 8: Format F5.2 - A, the geometrical spreading factor.
3 1 A = 0 (plane waves)
= -3
: 3 = 1/2 (cylindrical waves) 7
3 = 1 (spherical waves). 5;
Data Card 9: Format 14 - IAF, the absorption flag. IAF = O if the . ’véi

being used. IAF =1 if all absorption coefficients are

entered on data cards.

Data Card 10: Format 14 -~ .J, the number of harmonics retained in

the calculation.

T S U R v




: : Data Card 11: Format I4 - K, the number of initial G coefficients entered.

Data Card 12: Format 14

KI, the number of initial H coefficients enter=d.

pata Card 13: Format 14

NI, the number of harmonics printed to outpniut.

Data Card l4: Format 18 ~ IP, the integer multiplicative factor o7

DXI which gives the print-out interval.

If IAF = 0

o A Y WO MR, HORIR S T IR IR AR R VG

Data Card 15: Format D17.10 - ALPHA (1), the absorption coefficient

. of the fundamental in nepers per meter.

e Ty

! Data Card 16: Format 14 - L, the number of harmonics being modified

from the omega-squared dependence.

: Next L Cards: Format 14, D17.10 - These cards contain an integer, right
justified in the first four spaces on the card, specifying the

number of the harmonic followed by the absorption coefficient
: for that harmonic.

If IAF = 1

Data Card 15 to 14+J: Format D17.10 - These cards contain the J absorption

coefficients in order in nepers per meter.

Next K Cards: Format 14, D17.10 - These cards contain a right justified
integer, in the first four spaces, specifying the number of

the harmonic followed by the G amplitude coefficient of .hat

harmonic in meters per second.

Rext ¥T Carls: ¥Format 14, D17.10 - Thesc cards contain a right jusiified

iateger, in the first four spaces, specifying the number of

AL i 8

the harmonic followed by the H amplitude coefficient of
that harmonic in meters per second.
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D. Printed Output

A sample output from FAW is shown in Appendix R. The first portion of
the output contains a listing of all input parameters. This allows the input
paramcters to be checked for errors and is useful for future reference. The

remaining portion contains the calculated output.

The distance in meters is printed at each output interval followed by
two columns of numbers. The columns are labeled and contain the amplitudes
of the sine and cosine components divided by the normalization constant FE.
The number of terms output at each interval is NI, which is a user-specified
parameter. In addition, the step size DX in meters, is printed each time the
step size is doubled. This gives the user useful information on the effects

of varying the step size doubling parameter € and the number of harmonics

printed out NI.
E. Number of Harmonics

A sufficient number of harmonics must be retained in the calculation to
insure a negligibly small error in the highest harmonic of interest. Tn order
to obtain some measure of the required number of harmonics, the algorithm
was used to calculate the harmonic content of an initially pure sinusoidal
plane wave with a variety of harmonics being retained in the calculation. The
frequency of the fundamental was 2.5 MHz, and the initial pressure amplitude
was 3 atmospheres, which gives a discontinuity distance of 21 cm. Table 1
lists the percentage deviations of the resulting amplitudes of the first five
harmonics, at the discontinuity distance, from the values obtained when 40
harmonics were retained. As is obvious from the table, the required number
of harmonics to retain depends on the harmonic of interest and the allowable
error. If the fundamental is the only harmonic of interest, one need retain
no more than seven harmonics in the calculation. On the other hand, an
accurste value for the fifth harmonic may require twenty or more harmonics

to be retained in the calculation.
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Table 1 - tercentage deviatfon in the first five haruwnics
for various numbers of retained harmonjcs N

N
\ 7 8 9 10 15 20 25 30
HARIONIC
Ist (.03 0.62 0.02 0.02 0.004 0.0003 0.00002  0,00000
2nd 0.20 0.20 0.10 0.10 0.020 0.0020 0.00030  0.00003
3rd 0.80 0.60 0.50 .50 0.080 0.0090 0.00100 0.00010
4th 2.40 1.80 1.60 1.50 0.200 0.0200 0.00300  0.00040
5th 4.40 3.80 3.50 3.40 0.500 0.0500 0.00700  0.00080

F. Step Size

With the ability of the program to double the step size after each step,
it is best to choose the initial step size conservatively and let the program
find the best value. In order to determine a conservative initial value for
the step size, the choice of step size was investigated for the same 2.5-MHz
plane-wave case used in the previous section. The step size was not allowed
to double and various step sizes from 1/200 to 1/10 of the discontinuity
distance were used. Table 11 lists the pe centage deviations of the first
five harmonic amplitudes from the values obtained when the step size was 1/200
of the discontinuity distance. The amplitudes were those at the discontinuity
distance, and forty harmonics were retained in the calculations. The table
indicates that a step size of 1/10 of the discontinuity distance will yield

results that are accurate to within the normal experimental error.
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Table II - Percentage deviation in the first five harmonics
for various step sizes

(6 = discontinuity distance)

STEP SIZE
\\‘\\~\\\\\\‘ 1/100 ¢ 1/5C o 1/20 o 1/10 o
HARMONIC
1st 0.0005 0.0030 0.0200 0.0600 3
—§
2nd 0.0001 0.0050 0.0300 0.1000 z
E=
3rd 0.0020 0.0100 0.0900 0.4000 E
4th 0.0070 0.0400 0.2500 1.1000
5th 0.0100 0.0700 0.5000 2.0000

V. COMPARTSON WITH PHENOMENOLOGICAL MODFL

As a test of their validity, Eqs. (10) and (11) were used to compute the
harmonic content of an initially pure sinusoidal 200-Hz plane wave. An omega-
squared frequency dependence of the linear absorption terms was assumed with
the absorption of the fundamental being 1.12 x lnvﬁﬂp/m. The initial pressure

was 1 atmosphere. This problem was also solved using a computer algorithm

{6] based on the phenomenological model of Fox and Wallace {7]. Figure (1)
illustrates the agreement between the results obtained using the algorithm
presented in this paper, shown as solid curves, and the results obtained using
the phenomenological model, shown as dots. Although only the first four

harmonics are illustrated in this figure, the agreement was equally as good
for higher harmonics.
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Fig. 1 - Calculated harmonic behavior of an initially pure

sinusoidal plane wave (v = 300 Hz, » = 1.12 x 10 =~ N/m,

and P =1 atm.) by frequency domain algoritha,
o]

e phenomenological model.
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APPENDIX A

COMPUTER PROGRAM FAW

THIS FROGRAM STEFWISE CALCULATES THE HARMONIC CONTENT
OF A FINITE AMPLITUDE WAVE AS A FUNCTION OF FOSITION.
THE INITIAL WAVEFORM MAY HAVE ANY HARMONIC CONTENT

AND ARBITRARY FHASE. THE ARSORFYION COEFFICIENTS MAY
RE EXTERNALLY SUFFLIED OR AN INTERNAL OMEGA SQUARED
ALGORITHM IS SUFFLIED, THE INTERNAL ALGORITHM ALLOWS
MODIFICATION OF ANY OF THE OMEGA SQUARED COEFFICIENTS.
THE NUMERICAL INTEGRATION USES THE RUNGE-KUTTA METHQODN
ANDI THE STEF SIZE WILL AUTOMATICALLY INCREASE WHEN THE
CHANGE OVER AN INTERVAL IS SMALL.

ODIMENSION G{S0)sGX(50)»G2(100)sH(S0)sHX(S0)9H2(100)
DIMENSION X1(S50:50)9X11(350230)9X2(50550)

DIMENSION X22(50+50)sXL(S0)sXL1(50)sGH(50)

DIMENSION ALFHA(S0)»DG(50)sDIG1(50) s+ DH(S50)»IIH1(50)
DIMENSION RG(S)»KH(3)

DOUEBLE FRECISION GsyGX»G2yHyHXsH2,X19X119X2»X22,XLyXL1
DOUELE FRECISION GH,ALFHA,DGyDG1,DHsIH1sRsCrFREQsERETA
DOUELE FRECISION EsByXsF1loIXyRMAXIRN9Z»Z1,0XIsFD
IOUBRLE FRECISION YsRO

INITIALIZE REGISTERS TO ZERO

0 110 IR=1,100
G(IB)=0.D10
GX(IRBR)=0.0100
G2(IE)=0.010
H(IR)=0.100
HX(IR)Y=0.10
H2(IR)=0.110
CONTINUE
B0 130 IC=1,50
00 120 10=1,30
X1(IC,»II)=0.,010
X11 (IC, L =0. 10
X2(IC I =0,110
X22(IC, [ =0.10
CONTINUE
CONTINUE

INFUT DATA

FREQ=FUNDAMENTAL FREQUENCY

READ(S,140)FREQ
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100
101
102

180
c
190

C

200
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FORMAT(D17,10)
FRINT 150,FREQ
FORMAT(S5X s 1OHFREQUENCY=yD117.10)

C=SMALL SIGNAL SOUND SFEED

READ(S,140)C
FRINT 160.C
FORMAT(SX»12HSOUND SFEEL=»D17.10)

BETA=COEFFICIENT OF NONLINEARITY(1+R/24)

REALI(S+140)BETA
FRINT 170sBETA
FORMAT(S5XySHERETA=s1117.10)

E=NORMALIZATION CONSTANT (OUTFUT IN DB REC(E))

READN(S»140)E
FRINT 180yE
FORMAT(SX»23HNORMALIZATION CONSTANT=y1i7.10)

n

R B RS S R S s A S B R T A S R

IXI=INITIAL STEF SIZE

READN(Sy140)1XI
FRINT 190,DXI
FORMAT(SX»18HINITIAL STEP SIZE=»[117.10)

RMAX=MAXINUM FROFAGATION DISTANCE
REATI(S5s140)RMAX

FRINT 200s,RMAX
FORMAT (SX s 17HMAXIMUM DISTANCE=,D117.10)

A LT L IO DA 5

RO=SOURCE SIZEC(INITIAL FOSITION FOR GEOMETRICAL SPREADING)

REALI(S5,140)R0
FRINT 210sR0
FORMAT (5Xy12HSOURCE SIZE=,[17,10)

A=SFREANING FACTOR

=0 (FLANE WAVES)

=1/2 (CYLINDRICAL WAVES)
=1 (SFHERICAL WARVES?

READ(S,220)A
FORMAT(FS.2)
FRINT 230sA
FORMAT(SXs17HSHREANING FACTOR=»F3.2)

IAF- FLAG(ABSORPTION COEFFICIENTS)




103 ¢ =0 (OMEGA SQUARED' DEFENDENCE)
104 C =1 (EXTERNALLY SUFPFLIED)
105 C
106 REAL(S»240) IAF
: 107 240  FORMAT(I4)
i - 108 FRINT 250, [AF
F 109 250  FORMAT(SX,»16HARSORFTION FLAG=:I4)
i i 110 C
111 C J=NUMEER OF HARMONICS RETAINED IN CALCULATION
112 ¢
113 READ(5,240)J :
114 FRINT 260sJ :
: 115 260  FORMAT(5Xy20HNUMBER OF HARMONICS=,14) 4
; 116 C :
: 117 ¢ K=NUMBER OF INITIAL G COEFFICIENTS E
118 ¢ KI=NUMBER OF INITIAL H COEFFICIENTS x
; 119 C 3
: 120 REAL(S,240)K &
: 121 READIN(S5,240)KI 2
122 FRINT 270K ;
123 270  FORMAT(SX»23HINITIAL G COEFFICIENTS=,14) %
124 FRINT 280sKI E
! 125 280  FORMAT(SX»23HINITIAL H COEFFICIENTS=,I14) ‘2
i 126 C i
¢ 127 C NI=NUMEER OF HARMONICS FRINTED OUT b
; 128 C 3
: 129 REAII(S,240)NI .
130 FRINT 290sNI -
131 290  FORMAT(S5X,27HNUMBER OF HARMONICS OUTFUT=:I14) .g
I 133 C IF-FRINT OUT INTERVAL=IFXIX <3
: 134 C .
{ 135 READ(5y300)IF 3
f 1346 300  FORMAT(IS8) &
137 FRINT 310,1F 2
138 310  FORMAT(SXs19HFRINT OUT INTERVAL=,I8) A§
139 ¢ %
140 C OBTAIN ARSORFTION COEFFICIENTS E
141 € 3
: 142 IF(IAF)11105,320,400 :
! 143 C P
144 C OMEGA SQUARELD DEFENDENCE %
145 ¢ C 2
146 320  READ(S,»140)ALFHA(1) E
147 FRINT 230,ALFHAC(1) k-
148 320  FORMAT(SXs9HALFHA(1)=401117,10) g
149 D0 340 IE=2,. =
150 ALFHA(1E)=TEXIE¥ALFHA(1) %
151 340  CONTINUE i
152 ¢ ;
153 C L=NUMERER OF AESORFTION COEFFICIENTS EEING MODIFIED

o - - g

e S U = Doy




154
133
156
157
158
159
160
161
1462
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
199
196
197
198
199
200
201
202
203
204

c

360
370

380

390

OO0

400

4290
430

440

4350
460

470
480
490
500

[P FO N o]
L OO

OO0 uaen

FROM OMEGA SQUAREID' NEFENDENCE

READ(S+240)L
PRINT 330,L

FORMAT(5X s 43HNUMBER OF MODIFIED ARSORFTION COEFFICIENTS=,14)

IF(L)Y1110+440,260
FRINT 370

FORMAT(SX»33HMOMIFIED ABSORFTION COEFFICIENTS.)

o 390 I6G=1sL
REAL(Ss380)INsX
FORMAT(I4,017.10)
FRINT 2B0sNsX
ALFHA(N) =X
CONTINUE

60 TO 440

INFUT ABRSGRFPTION COEFFICIENTS

FRINT 410

FORMAT(5Xs 23HAERSORFTION COEFFICIENTS)
00 430 IH=1,J

READ(S»140)X

ALFHA(IH) =X

FRINT 4202 IH»ALFHA(IH)

FORMAT (1X+» 6HALFHA(»13,2H)=»D017.10)
CONTINUE

READ INFUT WAVEFORM

CONTINUE

IF(h>1110,490,450

FRINT 460

FORMAT(S5Xs 1AHINFUT WAVEFORM)
00 480 IJ=1.K

READN(S5,380)N» X

GIN)=X

FRINT 470sNsG(N)
FORMAT(1Xs2HG(»I3+2H)=»1117.10)
CONTINUE

IF(K1I)1110+5305,500

0 520 IK=1,K1

REAT(S ), 3B0)IN» X

H(N) =X

FRINT S10sN»H(HD
FORMAT(I1XsZHH(+T3s2H)=»1117,10)
CONTINUE
E=2,1415926L36%XBETAXFREQ/ (CXC)

CALCULATE MATRIX ELEMENTS

[0 S50 IL=2.J
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205
206
207
208

209 §
210 S

211
212
213
214
215
216
217
218
219
220
221

222

223
224
225
226
227
208
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251

neND

-t

560
570

n

aooou

590

600

610
620

IL1=IL~1
00 5S40 IM=1,IL1
X113 (IL» IM)=DEXF{ (ALFHACIL)~ALFHA{IM)~-ALFPHACIL~-IM) ) XDXI)
X1(IL,IM)=1,00
CONTINUE
CONTINUE
IFX=J~1
Do 570 IN=1,IFX
INI=J~IN
00 560 IF=1,IN1
X22CINs IF)=HEXF( (ALFHACIN) -ALPHACIP)-ALPHACIN+IF) )XDXI)
X2(INsIF)=1,50
CONTINUE '
CONTINUE
00 S80 IQ=1sd
GH(IQ)=DEXF(-ALFHA(IQ)XDXI)
CONTINUE

SET COUNTER

RN=RO
R=RN
DX=nX1I
Fo=IF%XDOX
F1=1.D0 3
CR=DIIXXE "B

FILL ARRAYS

00 400 IR=1,J
G2(IR)=G(IR)
H2(IR)Y=H(IR)
DG(IR)=0.h0 "
LDH(IR)=0.110
CONTINUE

ENTER LOOF FOR CALCULATING FIRST DERIVATIVE

00 620 IS=2yJ
00 610 IT=1,IFX
CX=CBXIT*X1(IS,IT)
IG(IS)=CXX(B2(IS-ITIXG2(IT)-H2(IS-ITIXH2(IT))I+DG(IS)
DHCIS)=CXXK(H2(TUS-ITIKG2(ITI+6G2(IS-ITIXH2(IT))+DH(IS)
CONTINUE
CONTINUE
Do 640 IU=1,J
09 630 IV=1,IFX
CX=CEXIUXX2(IU,yIW) ;
DGCIUWI=DGCIUY -CX¥(G2(IU+IVIXG2(IVI+HZ(TU+IVIXH2(IV))
DHCOIW =DH(IUY +CXR(G2(TUHTVIXH2(TV) -H2(TU+IVIXG2(IV))
CONTINUE
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256
257
258
259
260
261
242
263
264
: 245
266
= 267
248
269
27

271
272
1 273
274
275
274
277
278
279
280
281
282
283
284
285
286
287
288
289
290
: 291
292
: 293
. 294
b 295
296
» 297
298
299
300
301
302
303
304
305
306

TP

640

lwAw Nl

670

680
690

700

710

[qp I o B av B o]

712

714

720

CONTINUE

CALLULATE NEW AMPLITUDES FOR SECOND DERIVATIVE

no 650 IW=1.,J4
G2(IW)=G(IW)+DG(IW)
H2CIWI=H(IWY+DH(IW)
D61 (IW)=0.D0
DH1{IW)=0.I:0
CONTINUE

FIND LAST FIVE NON-ZERO HARMONICS

00 655 IW1=1,5

RKG(IW1)=0

KH(IW1)=0

CONTINUE

Do 710 IX=1..J

IF(G2(IX))660:,680+660
g 670 1v=i,4
RG(IY)=KG(IY+1)
CONTINUE

KG(5)=IX

IF(H2(IX))690:710+690
po 700 1Z=1,4
RNH{IZ)=KH(IZ+1)
CONTINUE

KH(S)=IX

COMTINUE

INSURE THAT THE LAST FIVE HARMONICS ARE NOT
FROGRESSIVELY LARGER

0o 720 JA=1-4

JB=KG (JA)
IF(JR)712+720,712
2=0ABS(G2(JR))
JC=KG(JAt1)
IF(JC)714,720+714
Z1=DABS(G2(JC))
IF(Z1,LT.2)60 70 720
G2(JC)=0.95%G2(.ICIXZ/ L1
COMNTINUE

0o 730 Jh=1+4
JE=KH(JD)
IF(JE)722,730,722
Z=DABS(H2(JE))
JF=KH(JD+1)
IF(JIF)724+4730,724
Z1=UARS{H2(JF))
IF(Z1.LT.2)60 TO 730
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H2(JF)=0.95kH2(JF)%2/21
CONTINUE

R=R+DX
JIF(A)1110,760+,740
IF(A.LT.1,00)60 TO 750
F1=RN/R

CB=DX%XRXF1

GO 70 760
F1=(RN/R)¥%0.5
CE=DOXXExXF1

ENTER LOOF FOR CALCULA}ING SECONDI' DERIVATIVE

00 780 JG=2,J
ng 770 JH=1,IFX
CX=CBXJH%XX11(JG» JH)
I61(JG) =CXX(G2(IG-JHIXG2(JIH)-H2(JG-JHIXH2(JH)»+DG1{JG)
DH1(JG) =CXX (H2(JG-JH)XG2(JH) +G2(JG-JH) XH2 (JH) Y+DH1 (JG)
CONTINUE

CONTINUE

g 800 JI=1,J
0g 790 J44=1,1FX
CX=CBXJIXX22(JI,Jd)
061(JI)=D061(JI)-CXX(G2(JI+JIXG2(II)+H2C(IT+IIIKH2(JI))
DH1(JI) =DH1(JD) +CXX(G2(JI+JJIKHZ2(JJ)-H2(JI+JIJIIXG2(JI))
CONTINUE

CONTINUE

CALCULATE NEW AMFLITULES

0 810 JRK=1.,d
G(JKY=G(JIKI+0. S (DG (IK)+DGL1(IK))
HOJK)=H(JIK)Y+0 ., Sk(DH(JR)+DIH1 (JK))D
CONTINUE

FIND LAST FIVE NON-ZERO HARMONICS

00 320 JL=1,5

KRG (JL)=0

KH(JL)=0

CONTINUE

0o 880 JM=1,J

IF(G(JM))IB30+850,330
00 840 JN=1,4
KG(JN)=KG (Jr+1)
CONTINUE

KG(3)=UM

IF(H(IM))B60,880,860
00 870 J0=1.4
KHC(JO)=KH(JO+1)
CONTINUE
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358 KRH(S)=JH
359 8830 CONTINUE
360 €
361 C INSURE THAT THE LAST FIVE HARMONICS ARE NOT FROGRESSIVEL'Y LARGEF
362 ©
363 [0 890 JF=1,4
364 JQ=KG (JF)
3465 IF(JR)882,890,882
366 382 Z=1ABRSIG(IQ))
367 JR=hGCJF+L) .
368 IF(JR)884,890,884
369 8E4 Z1=0ARS(G(JR))
370 IF(Z1.LT.2)60 1D 890
371 G(JRI=Q.28XG(JIRIXZ/Z1
272 890 CONTINUE
373 Do 900 JS=1,4
374 JT=NH(JS)
375 IF(JT7)892:900,892
3746 892 Z=DABRS(H(JT))
377 JU=hH(JS+1)
378 IF(JU)I894,900¢894
379 894 Z1=DARS(H(JU))
3 i8¢ IF(Z1.LT.Z)GO TO 900
4 kE:31 HOJUWY =0 . 95kH(JUIRZ/Z1
ﬁ 382 900 CONTINUE
383 €
igg C CHECh FOR OUTFUI DISTANCE
385 €
386 905 IF((R-ROJ-FD)1010+950,910
387 C
3ge C INTERFOLATE OUTFUT
389 C
39¢ 910 Y=OX-((F=-RO)-FI)
391 g 920 JVU=1,NI
392 G2(JV)=62(JV)-TIG (V) +0,SX(DG(JVI+D61 (JV) I XY/DX
392 H2(JV) =H2(JV) -BH(JV) +0. SK(DH(JVI +DHT (JV) ) XY/DY
394 920 CONTINUE
395 X=F1
396 IF(A-0,5)940.925.9220
297 225 X=(RN/(RN+Y))%¥%0.5
398 GO 10 240

39% 920 X=RN/(RN1Y)
100 P40 00 245 JU1=1,9NI

401 KLCJULI=X%XkG2( JUL X UEAF (~ALFHA(JV1) ¥Y) /E

492 XL1CJVT ) =XkH2(JV1) XREXF (-ALFPHA(JIV1)XY)/E

4032 245 CONTINUE

404 60 TO 94S

405 950 BN 260 JX=1sN]

406 XL CIX) =V 1¥6{IX) ¥GH(IX) /E

107 XL1(OXD)=F1kH(JX)¥YGH(IX) /E y

468 960 CONTINUE
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409 965
410 970
411

412 980
413

414

415 990
416 1000
4317

418

419 C
420 ©
421 C
422 1010
423

424

425

426 1020
427

428 1030
429 1040
430

431 1050
432 ¢
433 C
434 C
435

4364

437

438 1060
439

440 C
441 ¢
442 ¢
443

444

445

446 1070
447

448

449

450

451 1080
452 1090
453

454 1106
455 1100
456

457 1110
458

FRINT 970,F0D
FORMAT(GXsPHRISTANCE=»D17,10)
FRINT 980

FORMAT (GX»3HSINy»20X s JHCOS)

0 1000 JY=1,NI

FRINT 290+ JdY XL(JY) s XL1C(JY)
FORMAT(1XyI4,4X,017,10+5Xs117.10)
CONTINUE

FU=FD+IFXDXI

GO0 TO 905

CHECK STiF SIZE

N=0

2=0.10

N0 1050 Ji=1sNI
IF(G(J1))1020+,1C30,1020

Z=Z+DARS (0. SX((NM53(J1)4+D61(J1))/6¢J1)))
N=N+1

IF(H(J1))1040,1050,1040

Z=Z+DABS (0. SX(DH(J1)4+DH1(J1))I/H(I1))
N=N+1

CONTINUE

MONIFY WAVEFORN

00 1060 J2=1,Jd
G(J2)=6(J2IXF1¥XGH(I2)
HOJ2)=H(J2)XF1XxGH(J2)
CONTINUE
IF(Z.6T,.(NXx0,005))60 T0O 1100

NOURLE STEF SIZE

nX=2.0x%0X

Do 1070 J42=1,J

GH(J2)=GH(J2)XGH(J2)

CONTINUE

00 1090 J3=1.4
LG 1080 Ja=1,J
X11(J3+J4)=X12¢0J35.J4)%X11(J3+J4)
X22(J3,J4)=X22(J3+J4)%X22(J3rJQ)
CONTINUE

CONTINUE

FRINT 1106,DX

FORMAT(1XyIHDX=+D117.10)

RN=R

IF(RMAX-(RK-R0)¥1110,590,590

STOF

END
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APPENDIX B

SAMPLE OUTPUT FROM FAW

FREQUENCY= 0.,3000000000L 03

SOUND SFEED= 0.1500000000L
RETA= 0.35000000000: 01

04

NORMALIZATION CONSTANT= 0.646700000000-01
INITIAL STEF SIZE= 0.10000000C0D 02
MAXIMUM DISTANCE= 0.1000000000D 0S5

SOURCE SIZE= 0.0000000000@
SFREADING FACTOR= 0.00
ARSORFTION FLAG= 0
NUMERER OF HARMONICS= 40
INITIAL 6 COEFFICIENTS=
INITIAL H COEFFICIENTS=

NUMEBER OF HARMONICS OQUTFUT=
FRINT OUT INTERVAL= 100

ALFHA(1)= 0,11200000000-05

00

i

NUMBER OF MODIFIED ABSORFTION COEFFICIENTS=

INFUT WAVEFORM
G( 1)= 0.646700000000-01
DNISTANCE= 0.100000000000 04
SIN cos
0.99412311440 00
0.,96226221200-01
0.13949845260-01
0.23944493330-02
0.45119651960-03
DISTANCE= 0.2000000000 04
SIN €os
0.97888824724Dn 00
0.18459999870 00
0.51970390940-01
0.17294786060-01
0.63137005930-02
DNISTANCE= 0.30000000000 04
SIN cos
0.95466729340 00
0.25876997670L 00
0.1041698315I 00
0.49452033820-01
0.25709949110i-01
DX= 0.2000000000D 02
DISTANCE= 0,4G00000000L 04
SIN cas
0.9220214992Ir 00
0,31384149400L 00
0,15741557640 00
0.92758489050L-01
0.59726447730-01
pxX= 0.4000000000n 02

o N e [N FA I I I

Gl =

(4 - #S I 6 B

0.0000000000L
0.0000000000D
0.,00000000000
0.,00000000000
0.00000000000

0.0000000000L
0.0000000000M
0.00000000000
0.0000000000D
0.00000000000D

0.00000000000
0.00000000000D
0.0000000000L
0.0000000000L
0.0000000000L

0.0000000000Dn
2.0000000000@
0.,00000000000
0.0000000000D
0.0000000000D

00
00
00
00
00

Q0
00
00
00
00

00
00
00
0C
00

00
00
00
00
00
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SIN

0.88174697380L
0.34690482480D
0.1988133777L
0.13306357720

0.926959545370~
OX= 0.30000000000 02
ODISTANCE=

0.835307356290
0.35814801410
0.22020568080
0.15675154410
0.12081284850

X= 0.1600000000* 03

00
00
00
00
01

00
00
00
00
00

ODISTANCE= 0.,5000000000N 04
SIN

cas

0.600030G0000D0 04

cos

DISTANCE= 0.70000000000 04

SIN

0.78636354950
0.35386784571
0.224748188Sh
0.146389553980L
0.12878692230

oX= 0.,32000000000 03

00
00
00
00
00

cos

DISTANCE= 0.8000000000L 04

SIN

0.,73893513020
0.3423198787n
0.22103348630
0.16292265480
0.129905716010

00
00
00
00
00

cos

DISTANCE= 0.90000000000 04

SIN

DISTANCE=

SIN

0.69473573830
0.32794109020
0.2137387066D
0.1583862311D
0.12596283300

0.653427379130
0.31281530200
0.20505735480
0.15238922580

0.121464353590

00
00
00
00
00

ocC
00
00
00
00

cos

0.10000000000 05

cos

0.,0000000000D
0.00000000000
9.,00000000000
0.0000000000D
0.0000000000D

0.0000000000L
0.00000000000
0.0000000000L
0.00000000000
0.0000000000L

0.00000000000
0.0000000000L
0.00000000000D
0.00000000C00
0.0000000000L

0.00000000000
0.00000000000
0.0000000000L
0.0000000000D
0.0000000000L

0.0000000000L
0.0000000000L
0 00000000O0OL
0.00000000000
0.00000000000

0.0000000000
0.00000000000
0.0000000000N
0.,00000000000
0.0000000000L

00
00
00
00
00

00

09
090
00

00
00
00
o¢
00

00
00
00
00
00

00
00
00
00
00

20
00
00
00
00
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